RETHINKING

Reusability

IN VUE

Alex Vipond

Contents

Changelog

Introduction

Authoring reusable components is difficult
Enter the Vue Composition API
Rethinking Reusability in Vue
Don't forget the ripple effects @
You'll decrease your cognitive load
The path to accessibility is much clearer
Vue newcomers are empowered

Prerequisites

Chapter 1: Reusable component pros and cons

Advanced components are really nice APls
Authoring reusable components is tough "
Authoring compound components is really tough.
Compound component communication is complex.
Compound components split up tightly coupled logic.
Seriously though, even wizards can't read compound components.

Where do we go from here?

Chapter 2: Refactoring compound components

What is a "function ref"
Why use function refs?
Let's study a compound component
Initialize component state
Render a scoped slot
Write methods
Provide references and methods to the component tree
Inject references and methods from the component tree
Render another scoped slot
Revisit compound component usage
Let's refactor a compound component
Write boilerplate, including function refs
Initialize composable state
Write methods
Bind data to DOM attributes
Attach event listeners to our DOM elements
Write a reimagined Vue template
Why refactor to function ref composables?
Function ref composables reduce boilerplate

Function ref composables drastically simplify component
communication

Function ref composables cleanly collocate tightly coupled logic
Okay, let's wrap this up.

How do | take it to the next level?

Chapter 3: Authoring the function ref pattern

Understand the function ref core concepts

Start with a Vue component

Organize code by logical concern

Within logical concerns, write code in a consistent order
Understand effect timing in Vue 3

Abstract your function ref creation

Abstract your ID generation

For rendered lists, track index-based positions, not raw data
Understand the limitations of ref objects

Store elements in custom data structures

ldentify and abstract common logic

Split up your event handlers

Combine event listeners for rendered lists

Take note of performance improvements

Expose reactive references and methods in the return value
Compare and contrast composables with directives
Explore patterns for extending functionality

Keep Tailwind markup readable

Follow tactics to get world-class TypeScript skills

Test in a real browser

Recognize that accessibility leaves room for creativity
Expand the web platform

Get inspiration from other open-source projects

Is Vue still simple?

About

Changelog

11.0

Updated listbox code

o

In compound Listbox group, showed how to make provide and
inject type-safe using Vue's InjectionKey type

Updated useListbox composable to use the latest version of
Baleada Features, which includes API changes + better and simpler
type safety for bind and on functions

Renamed active to focused to clarify purpose and have better
parity with my production-grade listbox composable

Converted all code examples to script setup

Small revisions for clarity throughout all chapters

Added lots of new content to Chapter 3, Authoring the function ref
pattern

o

o

o

Understand the limitations of ref objects

Store elements in custom data structures

Combine event listeners for rendered lists

Take note of performance improvements

Compare and contrast composables with directives
Explore patterns for extending functionality

Keep Tailwind markup readable

Follow tactics to get world-class TypeScript skills
Expand the web platform

Is Vue still simple?

https://baleada.dev/docs/features/interfaces/listbox

1.1.0 (continued)

e Added Changelog
e Added About

e Recorded a bunch of videos about Vue and other tools, all available on
my YouTube channel

1.0.2

e Added table of contents and cover page

1.0.1

e Fixed broken links

1.0.0

e Published!

https://www.youtube.com/channel/UC0OLXirNcjGKBPS1u1d8ytA

Introduction

Chapter summary

Reusability separates good Vue code from great Vue
code, and the Composition API opens up new frontiers
in reusability. Let's explore that concept.

Reusable code . It's the solution to bloated data stores, all-powerful "God"
components, state & functions littering the global scope, prop drilling,
naming collisions, and uncertainty & unpredictability .

| started reaping the benefits of reusable code after | took Adam Wathan's
"Advanced Vue Component Design" course, and learned how to write highly
reusable, Tailwind-friendly renderless and compound components.

When you're using a highly reusable Vue component, you feel like you're
writing superpowered HTML , with tons of functionality and accessibility
that just works, without requiring you to write custom, complex JavaScript,
sift through documentation on component props, fight CSS specificity wars,
or do anything that distracts you from designing and building a great UX.

The DX of reusable components is awesome! But in my opinion, the

authoring experience was difficult...until we got the Vue Composition API .

Authoring reusable components is difficult

When you're authoring highly reusable components, like renderless or
compound components, you need to have complete mastery of scoped
slots, as well as provide and inject and render functions.

https://adamwathan.me/advanced-vue-component-design/
https://v3.vuejs.org/guide/component-provide-inject.html#provide-inject
https://v3.vuejs.org/guide/render-function.html#render-functions

These specialized Vue APls are complex on their own, but complexity really
balloons when you add in your own equally specialized needs in
accessibility, design, reactivity, avoiding memory leaks, integrating third
party libraries, testing, bundling, browser compatibility, and everything else
that goes into building a powerful, reusable feature in a Vue app.

Stitching together niche Vue APIs to meet your complex requirements is
difficult!

Enter the Vue Composition API

The Vue Composition API lets us write composables —plain JavaScript
functions that can create reactive state, perform reactive side effects, and
hook into the component lifecycle.

We don't have to write these functions inside Vue components—we can
write them in their own files or even in separate repositories. We can publish
them as packages, and version them separately from the rest of our app, or
our component libraries.

I've been exploring the possibilities of the Vue Composition API, and I've
worked out the kinks in the function ref pattern, a composable pattern that
improves the experience of authoring feature-rich, accessible user
interfaces.

The function ref pattern is super useful for anyone who wants to keep their
codebases readable and maintainable, and for anyone who believes that
mastery of niche Vue APIs (scoped slots, provide and inject, and render
functions) shouldn't be a prerequisite for a great authoring experience in
Vue.

https://v3.vuejs.org/guide/composition-api-introduction.html#why-composition-api

Rethinking Reusability in Vue

Reusability is what separates good Vue code from great Vue code.

To help you write great Vue code, | organized what I've learned about the
function ref pattern into three chapters:

Chapter 1, Reusable component pros and cons, is a deep dive into the pros
and cons of the renderless and compound component patterns—arguably
the most powerful reusable component patterns that arose from Vue 2. It
also hints at the improvements composables bring to the table.

Chapter 2, Refactoring compound components, introduces the function ref
pattern for Vue 3 composables, and refactors a compound component into
a function ref composable. The main goals are to reduce boilerplate,
drastically simplify component communication, and cleanly collocate tightly
coupled logic.

Chapter 3, Authoring the function ref pattern, is an unstructured deep dive
into the function ref pattern, with detailed guidance on:

e Organizing code in the best way possible
e Replacing directives with function ref composables

e Using Tailwind CSS efficiently and effectively with function ref
composables

o Different ways of thinking about Ul problems and their solutions

e Much, much more

Don't forget the ripple effects @

When we talk about reusability in the Vue ecosystem, we usually identify
the core benefits:

e You no longer have to copy/paste large chunks of code multiple times

e When it's time to change your code, you only make the change in one
place, and the rest of the app gets updated automatically

e After you abstract component logic into something more reusable, you
don't have to wade through its complexity when you're polishing your
app—changing a few styles, adding a bit of Ul based on customer
feedback, etc.

e You can more easily style reusable components to align with your brand
or preferences.

e To achieve proper HTML semantics, reusable components either make
sensible choices for you, or they let you make those decisions yourself.

Those benefits are great, but | get even more motivated to work on
reusability when | look at the ripple effects .

You'll decrease your cognitive load

When Ul logic is abstracted away into reusable composables, you no longer
have to constantly confront that complexity. Your cognitive load goes down,
and you can stay more focused on the task at hand.

This is so important when we're polishing our apps, or doing long term app
maintenance.

The path to accessibility is much clearer

To create accessible user experiences, we need lots of Ul logic to manage
additional state, respond to keyboard events, trap focus, reactively update
ARIA attributes, etc.

As we get better at extracting this logic into flexible, reusable patterns, we
make it much easier to build bespoke accessibility features into our apps.

Vue newcomers are empowered

Building custom, logic-heavy features, like an accessible tablist or an
autocomplete experience, has simply been out of reach for Vue newcomers
in the past.

A new wave of reusable composables that don't rely on niche Vue APIs will
make it easier for newcomers to build something they're proud of (or
something they'll get paid for!).

Prerequisites

This book is written for Vue developers who are comfortable in Vue's
Options API, and have at least played around with the Vue 3 Composition
API a bit.

You don't need to understand niche Vue APIs like scoped slots, provide &
inject, and render functions. That knowledge definitely helps, but in fact, |
highly recommend this book for people who don't deeply know those APlIs,
since I'll be showing you how to make Ul logic more reusable without using
them.

As Vue 3 experience goes, you don't have to be an expert. Familiarity with
ref , computed, watch & watchEffect, and the setup function is more
than good enough, and if you want to feel really confident, | suggest a
course like Ben Hong's "Launching with the Composition API".

If you're familiar with "template refs" in Vue 3, great! If you're even familiar
with "function refs", even better! But neither of those is required——Chapter
2 covers that info in depth.

You do want to be comfortable reading Vue Single File Component syntax
before you dive in.

Being comfortable with modern JavaScript, including basic destructuring, is
always a plus, but not strictly required.

A handful of code snippets are written with very minimal TypeScript type
annotations. If you don't write TypeScript, the annotations are minimal
enough that you can ignore them.

https://explorers.netlify.com/learn/launching-with-composition-api
https://v3.vuejs.org/guide/single-file-component.html#single-file-components
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment

150+ pages of writing, code, and data viz

Buy the book

https://rethinking-reusability-in-vue.alexvipond.dev/buy

Reusable component pros and cons

Chapter summary

Reusable components, e.g. renderless and compound
components, are great user-facing APIs...but the
authoring experience is tough.

Two reusable component patterns that spread from the React community
into Vue 2 are "renderless components" and "compound components".

A renderless component is one that renders none of its own markup.
Instead, it renders a slot or a scoped slot (known in React as "render

props").

Adam Wathan's renderless tags input is a good example, and Michael
Thiessen's renderless component experiments are definitely worth checking
out too.

A compound component is part of a group of components that use
provide and inject to share reactive state in their component tree. In a
compound group of components, there is one parent component that
manages most or all of that state, and there are descendant components
that slot into the parent. Internally, those descendants modify and watch
the parent's state, ready to react to modifications made by other
descendants.

Also, the descendants can't be used outside of the parent component.
Without the parent's reactive state (shared through provide and inject),
the descendants break.

https://vuejs.org/guide/components/slots.html#slots
https://vuejs.org/guide/components/slots.html#scoped-slots
https://beta.reactjs.org/apis/react/Children#calling-a-render-prop-to-customize-rendering
https://adamwathan.me/renderless-components-in-vuejs/
https://michaelnthiessen.com/renderless-components-5-wild-experiments/
https://v3.vuejs.org/guide/component-provide-inject.html#provide-inject

The Headless Ul library is full of great examples compound components.
Also check out Lachlan Miller's videos about render functions, which feature
a reusable tabs component built with the compound component pattern.

In this chapter and the next, we're going to constructively criticize a
renderless, compound listbox , whose source code can be found on GitHub
in the repository accompanying the book.

Advanced components are really nice APIs

A nicely built renderless or compound component makes you feel like you're
writing HTML with superpowers. Complex, accessible widgets like listboxes,
grids, and modal dialogs become just another set of HTML tags to learn.

For example, take the renderless tags input mentioned above. Internally, it
implements a bunch of cool features:

e It doesn't let you add duplicate tags

e |t doesn't let you add empty tags

e It trims whitespace from tags

e Tags are added when the user presses enter on their keyboard
e Tags are removed when the user clicks the x icon

To benefit from all those features, you can write a component like the one
shown on the next page.

https://headlessui.dev/vue/menu
https://www.youtube.com/playlist?list=PLC2LZCNWKL9bt5t7n6rAPy1Yni-VIGJMc
https://github.com/AlPalLLC/rethinking-reusability-in-vue/blob/main/src/compound/Listbox.ts
https://www.w3.org/WAI/ARIA/apg/patterns/listbox/
https://www.w3.org/WAI/ARIA/apg/patterns/grid/
https://www.w3.org/WAI/ARIA/apg/patterns/dialogmodal/

<!-- CustomTagsInput.vue -->

<script setup>

import { ref } from 'vue'

import TagsInput from 'path/to/TagsInput'

const tags = ref([])
</script>

<template>
<TagsInput
v-model="tags"
v-slot="{ removeTag, inputBindings }"
>

{{ tag }}
<button
type="button"
@click="removeTag(tag)"
>
X
</button>

<t--
Multiple attributes and event listeners get bound to
the input element. They're all contained inside the
inputBindings object, so that you can v-bind
them more easily <&

-->

<input
placeholder="Add tag..."
v-bind="inputBindings"

/>

</TagsInput>
</template>

Note that, with the exception of v-slot, every line of code in the template
is either plain HTML, or it's basic Vue syntax.

If you have that body of knowledge, you won't just be copy/pasting a code
snippet like this and hoping it works—you'll actually be able to read and
understand every single line of code you're writing.

On top of that, you'll have complete control over the semantic HTML you're
using and any and all styling that gets applied—in other words, everything
that you most often need to customize when reusing components within
and across your projects.

And as for that v-slot —if you needed to deeply understand what it is and
how it works, you could visit the docs on scoped slots. More often than not,
though, a renderless component's documentation will tell you all you need
to know about how to use v-slot with that component.

Compound components have a really similar feel to them. The compound
listbox component | wrote for this book follows the WAI-ARIA listbox
accessibility guidelines and implements these features:

For end users:

e End users can click an option to select it, or mouse over an option to
focus it.

e End users can tab into the listbox to focus the selected option. From
there, they can use up and down arrow keys to navigate the listbox,
transferring focus to different options and causing assistive tech to
read the focused option's text. Mac users can hold down Command
while pressing arrow keys to quickly navigate to the top or bottom of
the list of options.

e End users can hit enter or their spacebar to select the focused option.

e Assistive tech properly informs end users of listbox state, because
accessibility attributes (namely role, tabindex, aria-selected,
aria-activedescendant, and aria-orientation) are all managed
automatically.

https://vuejs.org/guide/components/slots.html#scoped-slots
https://www.w3.org/WAI/ARIA/apg/patterns/listbox/

For developers:

e Developers can use v-model on the root Listbox component to
control the value of the selected option.

e Theroot Listbox component renders a scoped slot, which has access
to data describing listbox state, and methods to programmatically focus
or select different options.

e The child ListboxOption components can be rendered with v-for .
Each ListboxOption renders a scoped slot, which has access to
methods that retrieve the focused or selected state of that specific
option, and methods to easily and programmatically select the next or
previous option.

e Since Listbox and ListboxOption components only render scoped
slots, developers have full control over all markup and styles.

You can find a full example styled with Tailwind on GitHub, but for now, let's
flip to the next page to see the markup and Vue template you would write to
wire up the compound listbox.

https://github.com/AlPalLLC/rethinking-reusability-in-vue/blob/main/src/compound/CompoundListbox.vue

<template>
<Listbox
:options="options"
v-model="myOption"
v-slot="{
bindings,
focused, focus, focusFirst, focuslLast,
selected, select

}Il

<ul v-bind="bindings">
<ListboxOption
v-for="option in options"
:key="option"
:option="option"
v-slot="{
bindings,
isFocused, isSelected,
focusPrevious, focusNext

}II

<1li v-bind="bindings">
{{ option }}
<CheckIcon v-show="isSelected()" />

</1li>

</ListboxOption>

</Listbox>
</template>

<script setup>

import { ref } from 'vue'

import { CheckIcon } from '@heroicons/vue/solid'
import { Listbox, ListboxOption } from './Listbox'
import { options } from 'path/to/options'

const myOption = ref(options[0])
</script>

This component happens to be both compound and renderless. Not all
compound components are renderless—some, like the Headless Ul Listbox,
render minimal, customizable markup.

Regardless, there are always lots of similarities between renderless and
compound components.

The basic developer experience is similar: you're writing plain HTML,
sprinkled with custom HTML tags, basic Vue syntax like v-model and v-
for , and the occasional use of v-slot to access useful things provided by
the components in the compound group.

To read and write this code effectively, you'll need to know how the
components in a compound group are actually supposed to fit together. For
example, our ListboxOption has to nest inside our root Listbox .

Conceptually, though, this is exactly the same as nesting an HTML option
inside of a select . Alone or in the wrong order, the child elements break,
but nested together in the correct order, they take on additional meaning
and functionality.

A nicely built renderless or compound component makes
you feel like you're writing HTML with superpowers.

https://headlessui.dev/vue/listbox
https://twitter.com/intent/tweet?text=A%20nicely%20built%20renderless%20or%20compound%20component%20makes%20you%20feel%20like%20you%27re%20writing%20HTML%20with%20superpowers.&&url=https://books.alexvipond.dev&

=)

Authoring reusable components is tough

Usually, writing Vue components is a great experience! Vue's custom Single
File Component format makes it easy to keep related markup, styles, and Ul
logic all in the same file.

In my experience, renderless and compound components are the exception
to the rule.

Admittedly, renderless components aren't as tricky in Vue 3 as they were in
Vue 2. In Vue 3, we can render a single empty slot as the only element in
our Vue template, so the renderless component boilerplate looks like this:

<!-- MyRenderlessComponent.vue -->
<template>
<!--
If you bind data to this slot, it becomes a
scoped slot.
-->
<slot />
</template>

<script setup>
// Normal Vue setup code goes here
</script>

This is a big step up from Vue 2, where our only option was to write a
render function, using the this.$slots or this.$scopedSlots APIto
render the slot.

But compound components, even in Vue 3, are still complex and verbose.

https://v3.vuejs.org/guide/single-file-component.html

Authoring compound components is really tough.
Complexity and verbosity run rampant in compound components.

At a basic level, you need to author multiple Vue components when building
a compound group, so you need to repeat essential component boilerplate
multiple times.

If you're writing components in separate files, this means repeating the
renderless component boilerplate in each one.

On the other hand, if you're writing all components in a single .ts or .js
file, you can't use Vue templates, so you'll have to repeat some render
function boilerplate as well:

export const Root = {
setup: (props, { slots }) {

}ééurn () => slots.default({ ... })
}
}

export const Child = {
setup: (props, { slots }) {

;ééurn () => slots.default({ ... })
3
}

export const AnotherChild = {
setup: (props, { slots }) {

return () => slots.default({ ... })
3
}

All this is to say: as your compound group of components grows, you'll
repeat more lines of code that simply scaffold Vue components, and don't
directly add functionality.

Is this boilerplate unbearable or horrendous? No. But it's verbose and not
optimal, in my opinion.

Compound component communication is complex.

Something that does feel more unbearable is a common complexity found in
compound components: frequent use of provide and inject.

provide and inject! They're really useful when you need a child
component to read or edit some data in a potentially distant parent
component. Inside the parent component, you'll tell the component to
"provide" some data, and inside the child component, you'll tell the child to
“inject" that data.

When the child component gets created, it will walk up the component tree,
looking for the nearest parent that's providing the data the child wants to
inject.

The Listbox compound component we're studying in this book has a
perfect example of where this feature comes in handy. To explore why and
how, let's examine a small slice of logic this component needs to implement.

https://v3.vuejs.org/guide/component-provide-inject.html

First, per WAI-ARIA guidelines, each option element (rendered by the
ListboxOption components) must have an ID, and the root element
(rendered by Listbox) must have an aria-activedescendant attribute
whose value is the ID of the currently focused option.

Also, to make it easier for developers to apply styles and classes to the
focused option, the ListboxOption component should provide an
isFocused function to its scoped slot, which returns true for the focused
option.

Finally, when an option element detects a mouseenter event, it should
become the focused item. It should notify the root element to update its
aria-activedescendant . Its isFocused function should return true, and
the isFocused function of every other ListboxOption should return false.

So, inside of this component, we've encountered a situation where a parent
component—the Listbox —needs to be aware of reactively changing data:
the ID of the focused descendant.

Each child of that parent—the ListboxOption components—also need to
be aware of which option is currently focused, and they need a way to
notify the Listbox when their mouseenter event happens.

Here's a diagram of the basic component tree structure, and the reactive
data we're working with:

When the end user's mouse enters a ListboxOption, that descendant

component needs to tell the Listbox parent component, "Hey, the mouse
is on me! Here's my ID."

Note in this diagram that the Listbox receives the ID option-1 and uses it
to update the aria-activedescendant attribute.

Parent

Listbox aria-activedescendant: 'option-1'

The mouse is on me!
My ID is 'option-1'

Child Child
Option Option
id: 'option-1' id: 'option-2'

isFocused(): false isFocused(): false

That information, after flowing up to the Listbox , needs to trickle back
down through the component tree. Each ListboxOption needs to be
notified that the active descendant has changed, and they need to know if
they are that item. If so, their isFocused function returns true.

Note in this diagram that option-1 now has isFocused() returning true,
while it still returns false for option-2:

Parent
Listbox aria-activedescendant: 'option-1'

[1
The focused element The focused element
is 'option-1' is 'option-1'

Child Child
Option Option
id: 'option-1' id: 'option-2'
isFocused(): true isFocused(): false

In some ways, this feels like basic component communication. You might
instinctively think the ListboxOption can use Vue's emit feature to emit
an event when the mouse enters, and Listbox can listen for that event.

To move reactive data in the other direction, back down the component
tree, you might think that each ListboxOption can accept a prop to keep
track of the active descendant.

Props and emit work in many cases, but they get verbose and difficult to
maintain for large or more deeply nested component trees, with lots of
reactive data to keep track of.

Moreover, props and emit are not at all viable for our compound listbox. To
see why, let's take another quick look at the API we're trying to expose to
the developers who would actually use these components:

<template>
<Listbox
:options="options"
v-model="myOption"
v-slot="{
bindings,
focused, focus, focusFirst, focusLast,
selected, select

}II

<ul v-bind="bindings">
<ListboxOption

v-for="option in options'
:key="option"
:option="option"
v-slot="{

bindings,

isFocused, isSelected,

focusPrevious, focusNext

}ll

<1li v-bind="bindings">
{{ option }}
<CheckIcon v-show="isSelected()" />

</1li>

</ListboxOption>

</Listbox>
</template>

In that sleek template, do you see any activeDescendant prop being
passed down to the ListboxOptions ? Do you see any indication that the
ListboxOption s are passing the mouseenter event up to the Listbox ? The
answer in both cases is a resounding no.

And that's a really great thing—it means that the developers using these
compound components don't have to think about the implementation
details of component communication for this accessibility feature, let alone
all the other Listbox features, every single time they try to use this
compound group in their apps.

It also means that we're left with only one final solution for component
communication: provide and inject.

Instead of using props to tell our ListboxOption s which option is focused,
we would provide that data from the Listbox component and inject it
into each ListboxOption . And instead of using emit to tell the Listbox
when the mouse has entered a ListboxOption, we would use a technique
that is common in React, but rarely used in Vue:

1. The Listbox component sets up a reactive reference to track the ID of
the focused descendant.

2. The Listbox component also sets up an focus method that can
update that reactively tracked data.

3. The Listbox component uses provide to expose that focus method
to all of its descendants in the component tree.

4. The ListboxOption s inject the focus method, and call it whenever
they need to update the reactive reference.

The provide and inject solution, while very effective and pretty
interesting, carries its own significant downsides:

e |n our listbox, we're looking at the simplest possible provide / inject
relationship: a parent providing data to a single layer of direct children.
Component communication gets way more complex when you have a
professional-grade, production-ready compound listbox, with multiple
layers of nested components in a compound group, all reading and
writing reactive data inside a shared parent at the same time.

e provide and inject are much cleaner and simpler in Vue 3 compared
to Vue 2, but they still represent a big chunk of boilerplate code for
every compound component group you write.

e | suspect that the majority of Vue developers are comfortable with
props and emit, but pretty unfamiliar with that idea of passing down a
function that a child can call to update reactive data in the parent
component. When | first learned React after using Vue, that technique
(standard practice in React) totally threw me for a loop.

e provide and inject behavior and syntax are pretty specific to Vue. As
soon as you use them in your components, you make it significantly
more difficult for you and others to port that component to React,
Svelte, or any other component framework.

e provide and inject are not mainstream Vue features. Lots of
component authors could benefit from the compound component
pattern, but since provide and inject are relatively obscure, yet so
integral to the pattern, compound components are out of reach for
many (if not the majority) of Vue developers.

e All of this code and communication logic doesn't meaningfully enhance
the Ul logic we're trying to achieve in our Listbox . It's just a bunch of

complexity we encounter while working within the constraints of the
compound component pattern in search of an API that is truly pleasant
to use and reuse.

provide and inject! They're effective and
interesting, but relatively obscure, and can get
dizzyingly complex.

https://headlessui.dev/vue/listbox
https://twitter.com/intent/tweet?text=provide%20and%20inject!%20They%27re%20effective%20and%20interesting%2C%20but%20relatively%20obscure%2C%20and%20can%20get%20dizzyingly%20complex.&&url=https://books.alexvipond.dev&

Compound components split up tightly coupled logic.

Compound component complexity also stems from the limitations of single
file components. In a .vue file, you can only write one component. One
template tag, one script tag, one style tag, maximum.

This leaves compound component authors with two options:

1. Split up your compound group into multiple .vue files, or

2. Write your entire compound group of components in one . js file.

Both of these options have downsides.

If you write multiple .vue files, you'll be forced to arbitrarily split up tightly
coupled logic across your files. When you're working on an individual
feature, you'll constantly be flipping back and forth between your files,
trying to keep that logic straight in your head. Any kind of deep work will be
a distant dream.

If instead you write in a single .js file, you'll still be splitting up tightly
coupled logic, but you'll scroll up and down in your single file instead of
flipping between multiple files. Arguably less jarring, but still far from ideal.

More importantly, since you're in a plain old .js file, you won't be able to
write Vue templates. Instead, you'll write—you guessed it—JavaScript
render functions!

Don't get me wrong—I think the render function API is extensive, fantastic,
and necessary, and with my code as my witness, | love writing JS!

But render functions suffer from one of the same problems as provide and
inject : they're integral to the compound component pattern, but they're
still a niche, obscure feature. Their relative obscurity puts the compound
component pattern out of reach for most Vue devs.

https://baleada.dev/

Seriously though, even wizards can't read compound components.

A while back, | saw a Tweet that sums up the problems that plague
compound components in Vue:

Jun 6
It would be interesting to see a version of this.

,.,:\ Jun 6

gogo

Rich Harris ©@

4/ >
2
ST VIN @Rich Harris
‘B Rich_Harri

Replying to

i would but i can't make heads or tails of either
example, frankly!

Let's unpack that a little.

First, it's important to note that Rich Harris is the creator of the frontend
framework Svelte and the JavaScript module bundler Rollup, and he spent
years building interactive data visualizations with The New York Times.

In other words, this dude knows JS like the back of his hand, and he's a full-
on expert in reactivity who likely also has serious chops in component
design.

| also know from a talk he gave that he thoroughly understands Vue's
internal architecture.

In other other words, Rich Harris is a wizard.

https://svelte.dev/
https://rollupjs.org/
https://www.nytimes.com/by/rich-harris
https://www.youtube.com/watch?v=AdNJ3fydeao

In that tweet, he's replying to a thread about a Listbox compound similar
to the one we've been studying, saying he can't rebuild it in Svelte because
he "can't make heads or tails" of it.

The Listbox compound group he's talking about is an early version of the
Headless Ul compound listbox. Relative to other compound components, it
certainly isn't the simplest application of the pattern, but | wouldn't say it's
exceedingly complicated either. It's also masterfully written, with all code
organized as best as the Vue 2 API allows.

If an expert in JavaScript, reactivity, and component design, with intimate
knowledge of Vue's internals, can't make heads or tails of a well-organized,
moderately-complex compound component in Vue, what hope do the rest
of us have of understanding them, let alone writing them?

Usually, writing reusable components is a great
experience! In my opinion, compound components are
the exception to the rule.

https://twitter.com/intent/tweet?text=Usually%2C%20writing%20reusable%20components%20is%20a%20great%20experience!%20In%20my%20opinion%2C%20compound%20components%20are%20the%20exception%20to%20the%20rule.&&url=https://books.alexvipond.dev&

Where do we go from here?

Great news: the Vue Composition API solves a lot of problems for Vue
authors!

The composition APl opens up a new realm of possibilities for reusing logic
through composables. Composition functions open the door to:

e Reduced boilerplate
e Drastically simpler component communication

e Clean collocation of tightly coupled logic

For anyone who's ever been discouraged or defeated by the downsides of
renderless components and especially of compound components, the Vue
Composition APl is a dream come true.

In the next two chapters, we're going to dive deeper into how the function
ref pattern for composables will make that all work, and we'll see how the
APls we expose to other developers become even cleaner and more
flexible.

Next stop: Chapter 2, Refactoring compound components .

150+ pages of writing, code, and data viz

Buy the book

https://rethinking-reusability-in-vue.alexvipond.dev/buy

About

I'm Alex Vipond , the author of Rethinking Reusability in Vue.

I'm a front end developer with BetterHelp, and | also created Baleada, an
open source toolkit for web dev, especially Vue apps. | put all of my book's
lessons into practice in my work at BetterHelp and in the Baleada Features
package.

I've been in web dev for about 6 years, and a technical writer for a while
longer. One of my favorite contributions to the Vue community was my talk
at VueConf Toronto 2021, "Organizing Code by Logical Concern in Vue 3".

| wrote Rethinking Reusability in Vue primarily for Vue developers who are
comfortable in the Options API, have at least played around with the
Composition API, and are interested in learning new Vue 3 patterns for
reusability.

| also put a lot of effort into making sure devs who are experienced in other
front-end frameworks, like React, could still get value from the book. I'm
already using this book's patterns in BetterHelp's React app, shipping highly
reusable React code to thousands of licensed therapists and millions of
their clients. This stuff works!

I'm active on GitHub and on Twitter, and you can email me too. Send me
your thoughts or questions about the book!

https://betterhelp.com/
https://baleada.dev/
https://www.youtube.com/watch?v=q4a115Kdla8
https://github.com/
http://localhost:5173/print/twitter.com/alPalVipond/
mailto:hello@alexvipond.dev

